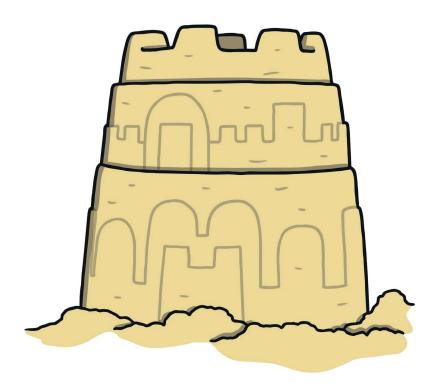


This bookmark is for...

The Mystery of the Sandcastle Stamper Game


The beach at Oyster Bay has an annual sandcastle competition every summer. Everyone gets very creative, and whole families spend hours on the beach building their sandcastle works of art.

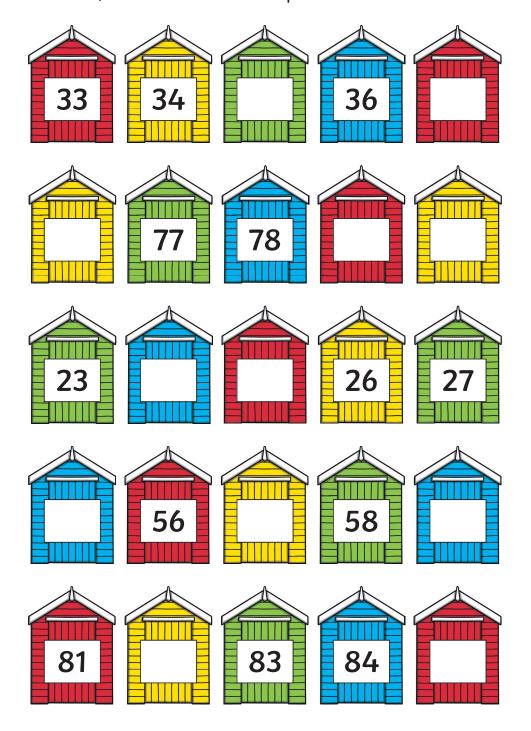
The competition will be judged by the Mayor of Oyster Bay, and first prize is a fish supper from Our Plaice Fish Bar every week for a year!

However, by lunchtime on the day of the competition, disaster has struck. Someone has stamped on all of the sandcastles, and destroyed the beautiful structures before they could be judged!

There had been a children's party on the beach front, that morning. Here are the details of the children who were there.

Your task is to solve the clues and work out who the Sandcastle Stamper is!

Information


Name	Male or Female	Age	Sunglasses	Shoe Size	Liked Strawberry Ice Cream
Francine	F	9	yes	3	no
Davey	М	7	yes	2	no
Tamasz	М	7	yes	1	yes
Mairéad	F	8	no	3	yes
Ellie-May	F	7	no	2	yes
Seb	М	8	no	2	no
Lenny	М	7	yes	4	yes
Joanna	F	8	no	2	no
Karim	М	7	yes	2	no
Stephen	М	6	no	1	yes
Freya	F	8	yes	2	yes
Sean	М	7	yes	2	yes
Ben	М	9	yes	2	yes
Nancy	F	8	no	1	no
Euan	М	7	no	3	no

Clue 1: Missing Numbers on the Beach Huts

Fill in the missing numbers on the beach huts. If you fill in more odd numbers than even numbers, the sandcastle stamper is male.

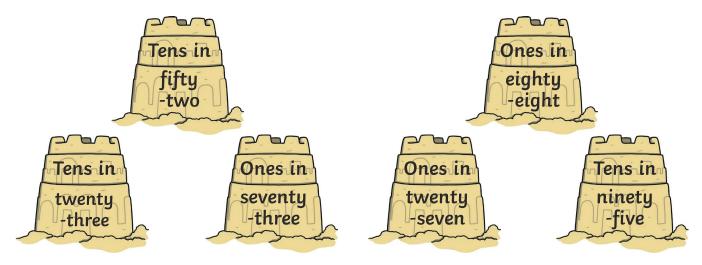
Clue 1: The sandcastle stamper is male or female.

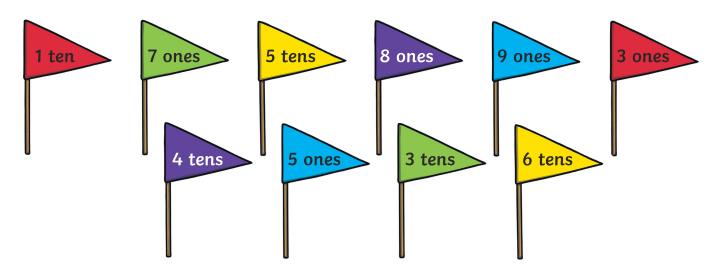
Put a circle around the correct answer.

Clue 2: How Many Buckets?

Work out the number statements, then colour in the correct answers in the box below. Rearrange the words to make a sentence to solve the next clue.

18	15	13	11	19	16
found	nine	jumper	seven	eight	was
17	14	12	8	20	6
girl	age	sun	flags	an	more


Clue 2:



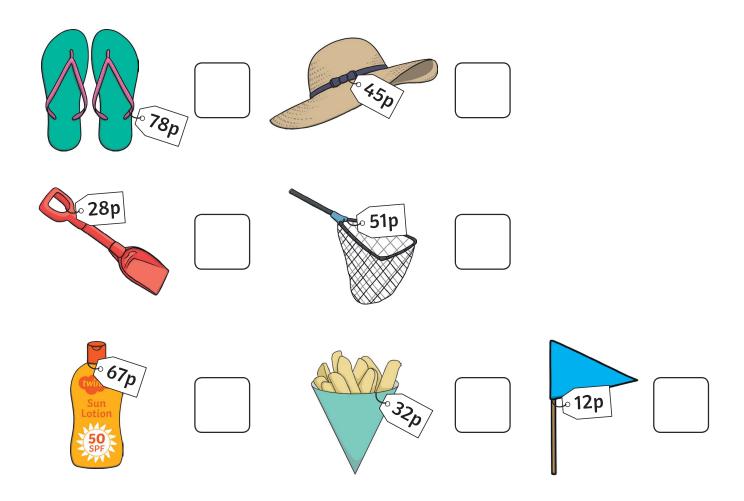
Clue 3: Matching the Sandcastles and the Flags

Draw a line to match the sandcastles to the flag showing the correct numbers of tens or ones.

Colour the answers in the table and unscramble the words to solve the clue!

5 tens	1 one	3 ones	6 ones
sunglasses	not	were	ice cream

8 tens	7 ones	9 ones	8 ones
there	broken	smashed	found


Clue 3:

Clue 4: At the Beach Shop

Work out the change from £1 when you buy these items from the beach shop, to work out this clue. Put the answer in the empty boxes at the end. Colour the answers in the table and solve clue number four.

72p	60p	22p	32p	88p	66p
was	didn't	sand	like	strawberry	lolly
55p	81p	68p	18p	49p	33p
ice cream	wrapper	found	naughty	on	the

Clue 4: _____

Clue 5: Shoe Size

A shoe print was discovered on one of the sandcastles. Solve the next clue to work out what size shoe the sandcastle stamper was wearing. Work out the answers to these number statements.

8 + 6 =

- 11 = 9

3 + = 15

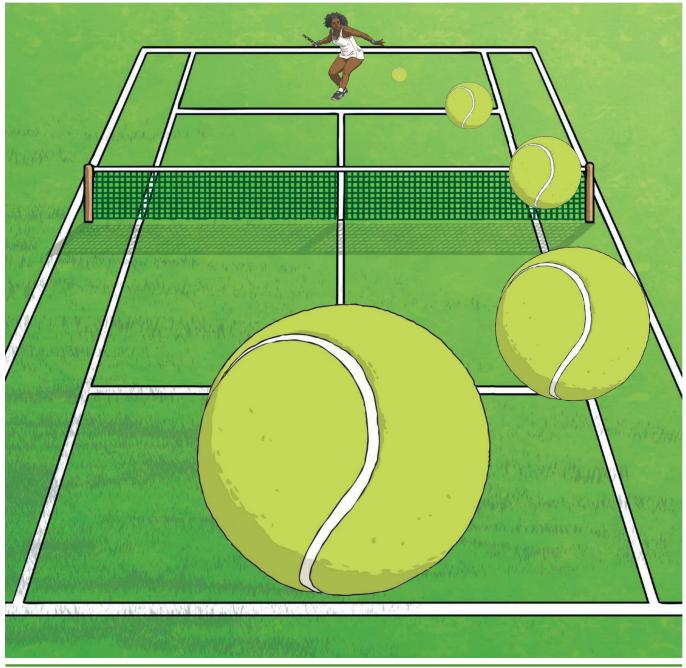
Double 9

16 - = 10

Look at all the answers you have filled in. What times table are they all multiples of? _____

That is the size of shoe worn by the sandcastle stamper!

Have you worked out who the sandcastle stamper is?

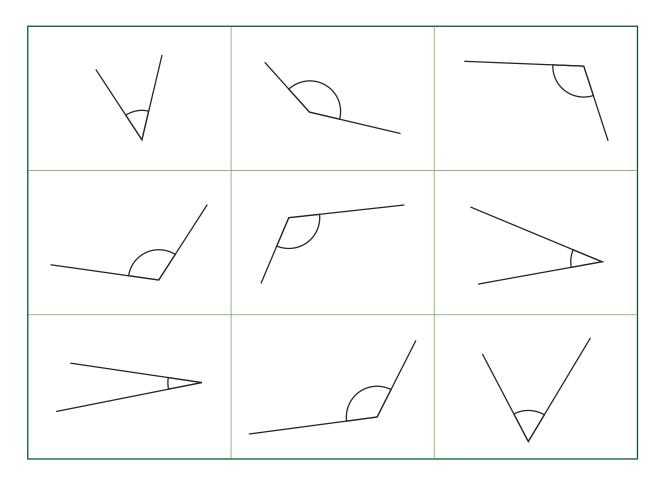

The sandcastle stamper is:

The Mystery of the Missing Tennis Balls

At this year's prestigious world tennis championships, the players are all prepared to challenge for the famous trophy. However, at the last minute the organisers discover that all the tennis balls have gone missing!

Can you solve the problems to find which wonderful player discovered the whereabouts of the tennis balls?

The Mystery of the Missing Tennis Balls


Player	Gender	Continent	Age	Kit Colour	Tennis Skill
Anna Avraham	F	Asia	24	Red	Serve
Bailey Brown	М	Europe	22	Green	Volley
Chow Chu	F	Asia	20	White	Slice
Daniel Diaz	М	South America	21	Blue	Speed
Elif Earl	F	Australasia	27	Purple	Backhand
Felix Falade	М	Africa	31	Black	Slice
Georgie Gonzales	F	North America	35	White	Serve
Harnam Hafeez	F	Australasia	25	Green	Volley
India Ings	F	Europe	30	Purple	Serve
Joshua Jelani	М	Africa	21	White	Slice
Kuljeet Kimura	F	Asia	23	Green	Volley
Li Lopez	М	South America	24	Black	Speed
Matt Martin	М	Australasia	34	Blue	Backhand
Nikita Naylor	F	North America	31	Black	Slice
Odetta Otto	F	Europe	30	Green	Serve
Preet Patel	М	Asia	20	Purple	Volley
Queenie Quarrie	F	Australasia	19	Blue	Backhand
Rehan Romero	М	South America	23	White	Serve
Sophie Selassie	F	Africa	22	Black	Speed
Thierry Toussaint	М	Europe	32	Purple	Volley
Violet Vera	F	North America	27	Blue	Speed
Wen Wu	F	Asia	24	Black	Slice

Clue 1: Angles Greater Than or Less Than a Right Angle

Identify whether each angle is greater than or less than a right angle. The answer that occurs the most will give a clue about who finds the tennis balls.

The majority of angles were less than a right angle.	The majority of angles were greater than a right angle.	
The player doesn't come	The player doesn't come	
from Europe.	from Africa.	

Clue

The player who finds the tennis balls doesn't come from _____

Clue 2: Equivalent Measures

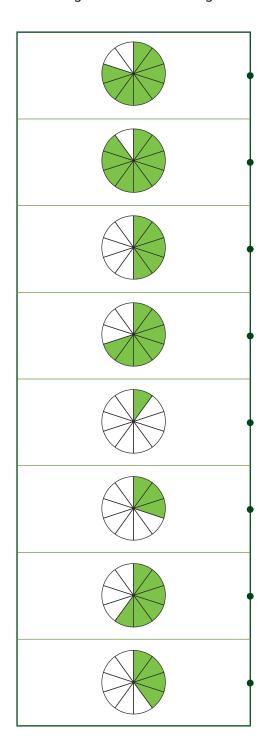
Find a path through the maze by colouring in the correct equivalent measures.

The path will reveal a clue about player who finds the tennis balls.

START	1m = 100cm	3000g = 3kg	4l = 4000ml	2m = 200cm
3m = 300cm	6km = 600m	2l = 200ml	2m = 2000km	1000g = 1kg
4m = 400mm	1l = 1000ml	4m = 400cm	2km = 2000m	5cm = 50mm
2000g = 2kg	3m = 3000mm	3km = 3000cm	2l = 2000ml	100g = 1kg
4m = 4000cm	3l = 3000ml	50mm = 5cm	4l = 400ml	5m = 500cm
5l = 5000ml	1km = 10cm	4000g = 4kg	2m = 20cm	5000m = 5km
The tennis player's special skills are not backhand or volley.	The tennis player's special skills are not slice or serve.	The tennis player's special skills are not speed or slice.	The tennis player's special skills are not volley or serve.	The tennis player's special skills are not backhand or slice.

Clue

The special skill of the tennis player who finds the tennis balls isn't a _____



Clue 3: Tennis Tenths

Match the calculation to the correct answer shown by the shaded circle.

The one remaining answer will tell you a clue about the player who finds the tennis balls.

$\frac{4}{10} + \frac{3}{10}$	The player's kit is blue or black.
$\frac{9}{10} - \frac{1}{10}$	The player's kit is green or black.
$\frac{3}{10} - \frac{2}{10}$	The player's kit is green or blue.
$\frac{6}{10} + \frac{3}{10}$	The player's kit is white or black.
$\frac{7}{10} - \frac{3}{10}$	The player's kit is green or purple.
$\frac{8}{10} - \frac{6}{10}$	The player's kit is blue or white.
$\frac{1}{10} + \frac{2}{10}$	The player's kit is purple or white.
$\frac{2}{10} + \frac{4}{10}$	The player's kit is black or purple.
$\frac{4}{10} + \frac{1}{10}$	The player's kit is white or green.
	$\frac{9}{10} - \frac{1}{10}$ $\frac{3}{10} - \frac{2}{10}$ $\frac{6}{10} + \frac{3}{10}$ $\frac{7}{10} - \frac{3}{10}$ $\frac{8}{10} - \frac{6}{10}$ $\frac{1}{10} + \frac{2}{10}$ $\frac{2}{10} + \frac{4}{10}$

Clue

The player who finds the tennis balls has a ______ or ____ kit.

Clue 4: Comparing Fractions

Look at each fraction comparison. If it is correct, put a tick. If it is incorrect, put a cross. Count the number of ticks and crosses.

If there are more ticks than crosses, the player who finds the tennis balls is female. If there are more crosses than ticks, the player who finds the tennis balls is male.

1 1	
$\frac{1}{3} > \frac{1}{5}$	
$\frac{7}{12} < \frac{5}{12}$	
$\frac{1}{4} > \frac{1}{2}$	
$\frac{5}{8} > \frac{3}{8}$	
$\frac{4}{5} > \frac{1}{5}$	
Total	

Clue

The playe (Circle the correct answer)

Clue 5: 3D Shapes

In each row, find the correct name of the 3D shape shown in the first column.

The column with the most correct answers will tell you the age of the player who finds the tennis balls.

cube		square-based pyramid	sphere
	cuboid	hexagonal prism	pentagonal prism
	triangular prism	tetrahedron	square-based pyramid
	sphere	cylinder	cuboid
Age	19-24	25-30	31-36

Clue

The player who finds the tennis balls is aged _____

The player who is responsible for finding the tennis balls is: ______.

